
Indici per Query
di Similarità

Sistemi informativi per le Decisioni

Slide a cura di Prof. Paolo Ciaccia

Indici per query di similarità 2

Plan of activities
In the following we will go through 2 distinct topics, all of
them being related by the common objective to provide
efficient support to the execution of similarity queries

1. We will describe the R-tree, by detailing how to search within a
vector space

2. Then, we will consider metric trees, which allow us to deal even
with non-vector features and with distance functions other than
(weighted) Lp-norms

Indici per query di similarità 3

Can we exploit indices to solve
multi-dimensional queries?

As a first step we consider B+-trees,
assuming that we have one multi-attribute
index that organizes (sorts) the tuples
according to the order A1,A2,…,AD
Again, we must understand what this
organization implies from a geometrical
point of view…

Indici per query di similarità 4

0

5

10

15

20

0 5 10 15 20
A1

A
2

The geometry of B+-trees
Consider the list of leaf nodes of the B+-tree: N1→N2→N3 →…
The 1st leaf, N1, contains the smallest value(s) of A1, the number of which
depends on the maximum leaf capacity C (=2*B+-tree order) and on data
distribution
The 2nd leaf starts with subsequent values, and so on
The “big picture” is that the attribute space A is partitioned as in the figure

No matter how we sort the attributes,
searching for the k-NN of a point q will
need to access too many nodes
The basic reason is that “close” points of
A are quite far apart in the list of leaves,
thus moving along a coordinate (e.g., A1)
will “cross” too many nodes

Close points can be here

N1

N2

Indici per query di similarità 5

0

5

10

15

20

0 5 10 15 20
A1

A
2

Another approach based on B+-trees
Assume that we somehow know, e.g., using DB statistics (see [CG99]), that
the k-NN of q are in the (hyper-)rectangle with sides [l1,h1]x [l2,h2]x…
Then we can issue D independent range queries Ai BETWEEN li AND hi
on the D indexes on A1,A2,…,AD, and then intersect the results

[l2
,h

2]
[l1,h1] Besides the need to know the

ranges, with this strategy we
waste a lot of work
This is roughly proportional to
the union of the results minus
their intersection

result is here

Indici per query di similarità 6

Multi-dimensional (spatial) indices
The multi-attribute B+-tree maps points of A ⊆ ℜD into points of ℜ
This “linearization” necessarily favors, depending on how attributes are
ordered in the B+-tree, one attribute with respect to others

A B+-tree on (X,Y) favors queries on X, it cannot be used for queries that do not
specify a restriction on X

Therefore, what we need is a way to organize points so as to preserve, as
much as possible, their “spatial proximity”

The issue of “spatial indexing” has been under investigation since the 70’s,
because of the requirements of applications dealing with “spatial data” (e.g.,
cartography, geographic information systems, VLSI, CAD)
More recently (starting from the 90’s), there has been a resurrection of
interest in the problem due to the new challenges posed by several other
application scenarios, such as multimedia
We will now just consider one (indeed very relevant!) spatial index…

Indici per query di similarità 7

The R-tree (Guttman, 1984)
The R-tree [Gut84] is (somewhat) an extension of the B+-tree to
multi-dimensional spaces, in that:
The B+-tree organizes objects into

a set of (non-overlapping) 1-D intervals,
and then applies recursively this basic principle up to the root,

the R-tree does the same but now using
a set of (possibly overlapping) m-D intervals, i.e., (hyper-)rectangles!,
and then applies recursively this basic principle up to the root

The R-tree is also available in some commercial DBMS’s, such as Oracle9i
In the following we just present the aspects relevant to query processing,
and postpone the discussion on R-tree management (insertion and split)

Be sure to understand what the index looks like and how it is used to
answer queries; for the moment don’t be concerned on how an R-tree
with a given structure can be built!

Indici per query di similarità 8

GD
E

H
F

P O
N

L

I

J
K

M

A

C

B

A B C

Recursive bottom-up
aggregation of objects
based on MBR’s
Regions can overlap

…………………………...D P

N O PI J K L MD E F G H
A B C

R-tree: the intuition

This is a 2-D range query
using L2, other queries
and distance functions
can be supported as well

Indici per query di similarità 9

R-tree basic properties (i)
The R-tree is a dynamic, height-balanced, and paged tree
Each node stores a variable number of entries

Leaf node:
An entry E has the form E=(tuple-key,TID), where tuple-key is the “spatial key”
(position) of the tuple whose address is TID (remind: TID is a pointer)

Internal node:
An entry E has the form E=(MBR,PID), where MBR is the “Minimum Bounding
Rectangle” (with sides parallel to the coordinate axes) of all the points reachable
from (“under”) the child node whose address is PID (PID = page identifier)

A B C

D
I J K L MD E F G H

A B
We can uniform things by saying
that each entry has the format

E=(key,ptr)
If N is the node pointed by E.ptr,
then E.key is the “spatial key” of N E=(tuple-key,TID)

E=(MBR,PID)

Indici per query di similarità 10

R-tree basic properties (ii)
The number of entries varies between c and C, with c ≤ 0.5*C being
a design parameter of the R-tree and C being determined by the
node size and the size of an entry (in turn this depends on the space
dimensionality)

The root (if not a leaf) makes an exception, since it can have as low
as 2 children

Note that a (hyper-)rectangle of ℜD with sides parallel to the
coordinate axes can be represented using only 2*D floats that
encode the coordinate values of 2 opposite vertices

Indici per query di similarità 11

Search: range query (i)
We start with a query type simpler than k-NN queries, namely the

The region of ℜD defined as Reg(q) = {p: p ∈ℜD , d(p,q) ≤ r} is also
called the query region (thus, the result is always contained in the
query region)

For simplicity, both d and r are understood in the notation Reg(q)

In the literature there are several variants of range queries, such as:
Point query: when r = 0 (i.e., it looks for a perfect (exact) match)
Window query: when the query region is a (hyper-)rectangle (a window)

Range Query
Given a point q, a relation R, a search radius r ≥ 0,

and a distance function d,
Determine all the objects t in R such that d(t,q) ≤ r

Indici per query di similarità 12

Search: range query (ii)
The algorithm for processing a range query is extremely simple:

We start from the root and, for each entry E in the root node, we check if
E.key intersects Reg(q):

Req(q) ∩ E.key ≠ ∅: we access the child node N referenced by E.ptr
Req(q) ∩ E.key = ∅: we can discard node N from the search

When we arrive at a leaf node we just check for each entry E if
E.key ∈ Reg(q), that is, if d(E.key,q) ≤ r.

If this is the case we can add E to the result of the index search

The recursion starts from the root of the R-tree
The notation N = *(E.ptr) means “N is the node pointed by E.ptr”
Sometimes we also write ptr(N) in place of E.ptr

RangeQuery(q,r,N)
{ if N is a leaf then: for each E in N:

if d(E.key,q) ≤ r then add E to the result
else: for each E in N:

if Req(q) ∩ E.key ≠ ∅ then RangeQuery(q,r,*(E.ptr) }

Indici per query di similarità 13

GD
E

H
F

P O
N

L

I

J
K

M

A

C

B
The navigation follows a
depth-first pattern
This ensures that, at each
time step, the maximum
number of nodes in memory
is h=height of the R-tree
Such nodes are managed
using a stack

…

Range queries in action

A B C

I J K L MD E F G H
…

…

Indici per query di similarità 14

Search: k-NN query (i)
With the aim to better understand the logic of k-NN search, let us define for a
node N = *(E.ptr) of the R-tree its region as

Reg(*(E.ptr)) = Reg(N) = {p: p ∈ℜD , p ∈ E.key=E.MBR}
Thus, we access node N if and only if (iff) Req(q) ∩ Reg(N) ≠ ∅
Let us now define dMIN(q,Reg(N)) = infp{d(q,p) | p ∈ Reg(N)},
that is, the minimum possible distance between q and a point in Reg(N)

The “MinDist” dMIN(q,Reg(N)) is a lower bound on the
distances from q to any indexed point reachable from N

dMIN(q,Reg(N1))

dMIN(q,Reg(N2))
dMIN(q,Reg(N3))

N1

N2

N3We can make the following
basic observation:

Req(q) ∩ Reg(N) ≠ ∅
⇔

dMIN(q,Reg(N)) ≤ r

r

Indici per query di similarità 15

Search: k-NN query (ii)
We now present an algorithm, called kNNOptimal [BBK+97], for solving k-
NN queries with an R-tree

The algorithm also applies to other index structures (e.g., the M-tree)
that we will see in this course

For simplicity, consider the basic case k=1
For a given query point q, let tNN(q) be the 1st nearest neighbor (1-NN =
NN) of q in R, and denote with rNN = d(q, tNN(q)) its distance from q

Clearly, rNN is only known when the algorithm terminates

Theorem:
Any algorithm for 1-NN queries must visit at least all the nodes N whose
MinDist is less than rNN

Proof: Assume that an algorithm ALG stops by reporting as NN of q a point t and
that ALG does not read a node N such that (s.t.) dMIN(q,Reg(N)) < d(q,t);
then Reg(N) might contain a point t’ s.t. d(q,t’) < d(q,t), thus contradicting the
hypothesis that t is the NN of q

Indici per query di similarità 16

The logic of the kNNOptimal Algorithm
The kNNOptimal algorithm uses a priority queue PQ, whose
elements are pairs [ptr(N), dMIN(q,Reg(N))]
PQ is ordered by increasing values of dMIN(q,Reg(N))

DEQUEUE(PQ) extracts from PQ the pair with minimal MinDist
ENQUEUE(PQ, [ptr(N), dMIN(q,Reg(N))]) performs an ordered insertion
of the pair in the queue

Pruning of the nodes is based on the following observation:

In the description of the algorithm, the pruning of pairs of PQ based on
the above criterion is concisely denoted as UPDATE(PQ)
With a slight abuse of terminology, we also say that “the node N is in
PQ” meaning that the corresponding pair [ptr(N), dMIN(q,Reg(N))] is in
PQ

Intuitively, kNNOptimal performs a “range search with a variable
(shrinking) search radius” until no improvement is possible anymore

If, at a certain point of the execution of the algorithm, we have found a
point t s.t. d(q,t) = r,
Then, all the nodes N with dMIN(q,Reg(N)) ≥ r can be excluded from the
search, since they cannot lead to an improvement of the result

Indici per query di similarità 17

The kNNOptimal Algorithm (case k=1)
Input: query point q, index tree with root node RN
Output: tNN(q), the nearest neighbor of q, and rNN = d(q, tNN(q))
1. Initialize PQ with [ptr(RN),0]; // starts from the root node
2. rNN := ∞; // this is the initial “search radius”
3. while PQ ≠ ∅: // until the queue is not empty…
4. [ptr(N), dMIN(q,Reg(N))] := DEQUEUE(PQ); // … get the closest pair…
5. Read(N); // … and reads the node
6. if N is a leaf then: for each point t in N:
7. if d(q,t) < rNN then: {tNN(q) := t; rNN := d(q,t); UPDATE(PQ)}

// reduces the search radius and prunes nodes
8. else: for each child node Nc of N:
9. if dMIN(q,Reg(Nc)) < rNN then:

10. ENQUEUE(PQ,[ptr(Nc), dMIN(q,Reg(Nc))]);
11. return tNN(q) and rNN;
12. end.

Indici per query di similarità 18

kNNOptimal in action

q

RN

N5

N7

N2

N4
Nodes are numbered
following the order in
which they are accessed
Objects are numbered as
they are found to
improve (reduce) the
search radius
The accessed leaf nodes
are shown in red

N3

t1

N1

N6t2

Indici per query di similarità 19

Correctness and Optimality of kNNOptimal

The kNNOptimal algorithm is clearly correct
To show that it is also optimal, that is, it reads the minimum number
of nodes, it is sufficient to prove that

it never reads a node N s.t. dMIN(q,Reg(N)) > rNN

Proof:
Indeed, N is read only if, at a certain execution step, it becomes the 1st element
in the priority queue PQ
Let N1 be the node containing tNN(q) , N2 its parent node, N3 the parent node of
N2, and so on, up to Nh = RN (h = height of the tree)
Now observe that, by definition of MinDist, it is:

rNN ≥ dMIN(q,Reg(N1)) ≥ dMIN(q,Reg(N2)) ≥ … ≥ dMIN(q,Reg(Nh))
At each time step before we find tNN(q), one (and only one) of the nodes
N1,N2,…,Nh is in the priority queue
It follows that N can never become the 1st element of PQ

Indici per query di similarità 20

The general case (k ≥ 1)
The algorithm is easily extended to the case k ≥ 1 by using:

a data structure, which we call ResultList, where we maintain the k
closest objects found so far, together with their distances from q
as “current search radius” the distance, rk-NN, of the current k-th NN of q,
that is, the k-th element of ResultList

The rest of the algorithm remains unchanged

15t2

12

9

8

4

distanceObjectID

t4

t18

t24

t15

ResultList
k = 5

No node with distance ≥ 15
needs to be read

Indici per query di similarità 21

The kNNOptimal Algorithm (case k ≥ 1)
Input: query point q, integer k ≥ 1, index tree with root node RN
Output: the k nearest neighbors of q, together with their distances
1. Initialize PQ with [ptr(RN),0];
2. for i=1 to k: ResultList(i) := [null,∞]; rk-NN := ResultList(k).dist;
3. while PQ ≠ ∅:
4. [ptr(N), dMIN(q,Reg(N))] := DEQUEUE(PQ);
5. Read(N);
6. if N is a leaf then: for each point t in N:
7. if d(q,t) < rk-NN then: { remove the element in ResultList(k);
8. insert [t,d(q,t)] in ResultList;
9. rk-NN := ResultList(k).dist; UPDATE(PQ)}

10. else: for each child node Nc of N:
11. if dMIN(q,Reg(Nc)) < rk-NN then:
12. ENQUEUE(PQ,[ptr(Nc), dMIN(q,Reg(Nc))]);
13. return ResultList;
14. end.

Indici per query di similarità 22

Back to the R-tree
It’s now time to discuss how an R-tree can be effectively
built
It has to be considered that many “R-tree variants” exist,
and it’s not our intention to go through their details
It just suffices to say that one of such variants leads to
what is known as the R*-tree [BKS+90], which is the
commonest version in use
With respect to the original proposal [Gut84], the R*-tree
adds smarter insertion and split heuristics, plus a so-
called “forced reinsert” technique that we do not consider
here

Indici per query di similarità 23

GD
E

H
F

P O
N

L

I

J
K

M

A

C

B

A B C

Remind:
Recursive bottom-up
aggregation of objects based
on MBR’s
Regions can overlap
Each node can contain up to
C entries, but not less than
c ≤ 0.5*C

The root makes an exception

……………………………D P

N O PI J K L MD E F G H
A B C

R-tree: how it looks like

Indici per query di similarità 24

R-tree: insertion of a new object
We start from the root and move down the tree one step at a time, trying
to find a “nice place” where to accommodate the new object p

For simplicity, we assume that indexed objects are points, similar arguments
apply if we index (hyper-)rectangles (MBR’s)

At each step we have a same question to answer:

A

C

B

p

Which child node
is the most suitable to

accommodate p?

A

C

B

p

And here?

Indici per query di similarità 25

R-tree: the ChooseSubtree method
The recursive algorithm that descends the tree to insert a new object p,
together with its TID, is called ChooseSubtree

ChooseSubtree(Ep=(p,TID),ptr(N))
1. Read(N);
2. If N is a leaf then: return N // we are done
3. else: { choose among the entries Ec in N

the one, Ec*, for which Penalty(Ep,Ec*) is minimum;
4. return ChooseSubtree(Ep,Ec*.ptr) } // recursive call
5. end.

We invoke the method on the index root
The specific criterion used to decide “how bad” an entry is, should we
choose it to insert p, is encapsulated in the Penalty method

Variants of the R-tree differ in how they implement Penalty
This insertion algorithm is the one used by most multi-dimensional and
metric trees

Indici per query di similarità 26

R-tree: the Penalty method
If point p is inside the region of an entry Ec, then the penalty is 0
Otherwise, Penalty can be computed as the increment of volume
(area) of the MBR

However, if Ec points to a leaf node, then [BKS+90] shows that it’s
better to consider the increment of overlap with the other entries

Both criteria aim to obtain trees with better performance:
Large area: increases the number of nodes to be visited by a query
Large overlap: also degrades performance

A B

p

B is better than A

Indici per query di similarità 27

R-tree: splitting of a leaf node
When p has to be inserted into a leaf node that already contains C entries,
an overflow occurs, and N has to be split
For leaf nodes whose entries are points the solution aims to split the set of
C+1 points into 2 subsets, each with at least c and at most C points
Among the several possibilities, one could consider the choice that leads to
have a minimum overall area

However, this is an NP-Hard problem, thus heuristics have to be applied

p
N

C = 16
c = 6

p N1

N2

pN1 N2

?

Indici per query di similarità 28

R-tree: splitting of a non-leaf node
As in B+-trees, splits propagate upward and can recursively trigger splits at
higher levels of the tree
The problem to be faced now is how to split a set of C+1 (hyper-)rectangles

Note that this applies also to leaf nodes if they store MBR’s
The original proposal just aims to minimize the sum of resulting areas
The R*-tree implements a more sophisticated criterion, which takes into
account the areas, overlap, and perimeters of the resulting regions

C = 7
c = 3

N
N1

N2

N1

N2

?

Indici per query di similarità 29

Beyond vector spaces
It’s a matter of fact that vector spaces, equipped with some (weighted)
Lp-norm, are not general enough to deal with the whole variety of feature
types and distance functions needed in MMDB’s

Example:
given 2 sets of points s1 and s2, their Hausdorff distance is defined as follows:

1 ∀ (red) point of s1 find the closest (blue) point in s2
Let h(s1,s2) be the maximum of such distances

2 ∀ (blue) point in s2 find the closest (red) point in s1
Let h(s2,s1) be the maximum of such distances

3 Let dHaus(s1,s2) = max{ h(s1,s2), h(s2,s1) }

Used for matching shapes

Indici per query di similarità 30

Another example: edit distance
A common distance measure for strings is the so-called edit distance,
defined as the minimum number of characters that have be inserted,
deleted, or substituted so as to transform a string s1 into another string s2
dedit(‘ball’,‘bull’) = 1 dedit(‘balls’,‘bell’) = 2 dedit(‘rather’,‘alter’) = 3

dedit(‘gatctggtgg’,‘agcaaatcag’) = 7

The edit distance is also commonly used in genomic DB’s to compare
DNA sequences. Each DNA sequence is a string over the 4-letters
alphabet of bases:

a: adenine
c: cytosine
g: guanine
t: thymine

a
7
-

c
6
g

t
=
t

a
5
g

a
4
g

a
3
t

c
=
c

g
2
t

ga-
==1
gag

The edit distance can be computed using
a dynamic programming procedure

Indici per query di similarità 31

A metric space M = (U,d) is a pair, where
U is a domain (“universe”) of values, and
d is a distance function that, ∀ x,y,z ∈ U, satisfies the metric axioms:

d(x,y) ≥ 0, d(x,y) = 0 ⇔ x = y (positivity)
d(x,y) = d(y,x) (symmetry)
d(x,y) ≤ d(x,z) + d(z,y) (triangle inequality)

All the distance functions seen in the previous examples are metrics, and so are
the (weighted) Lp-norms

Metric spaces

Metric indexes only use the metric axioms
to organize objects, and exploit

the triangle inequality to prune the search space

Indici per query di similarità 32

Principles of metric indexing (i)
Given a “metric dataset” P ⊆ U, one of the two following principles can be applied to
partition it into two subsets

Ball decomposition: take a point v (“vantage point”), compute the distances of all other
points p w.r.t. v, d(p,v), and define

P1 = {p : d(p,v) ≤ rv } P2 = {p : d(p,v) > rv }
If rv is chosen so that |P1|≈|P2|≈|P|/2 we obtain a balanced partition

v

d≡L2

q

rv

r

Consider a range query {p: d(p,q) ≤ r}
If d(q,v) > rv + r we can conclude that
no point in P1 belongs to the result
Proof:
we show that d(p,q) > r holds ∀p ∈ P1.
d(p,q) ≥ d(q,v) – d(p,v) (triangle ineq.)

> rv + r – d(p,v) (by hyp.)
≥ rv + r – rv (by def. of P1)
≥ r

P1

P2
Similar arguments can be applied to P2

p

Indici per query di similarità 33

Principles of metric indexing (ii)
Generalized Hyperplane: take two points v1 and v2, compute the distances of

all other points p w.r.t. v1 and v2, and define
P1 = {p : d(p,v1) ≤ d(p,v2)} P2 = {p : d(p,v2) < d(p,v1) }

v1

d≡L2

q
r

P1

P2

v2

Consider a range query {p: d(p,q) ≤ r}
If d(q,v1) – d(q,v2) > 2*r we can conclude
that no point in P1 belongs to the result
Proof:
we show that d(p,q) > r holds ∀p ∈ P1.
d(q,v1) – d(p,q) ≤ d(p,v1) (triangle ineq.)
d(p,v1) ≤ d(p,v2) (def. of P1)
d(p,v2) ≤ d(p,q) + d(q,v2) (triangle ineq.)

Then:
d(q,v1) – d(p,q) ≤ d(p,q) + d(q,v2)
d(p,q) ≥ (d(q,v1) – d(q,v2))/2

> r (by hyp.)

p

Indici per query di similarità 34

The M-tree (Ciaccia, Patella, Zezula, 1997)
The M-tree has been the first dynamic, paged, and balanced metric index
Intuitively, it generalizes “R-tree principles” to arbitrary metric spaces

The M-tree treats the distance function as a “black box”
Since 1997 [CPZ97] it has been used by several research groups for:

Image retrieval, text indexing, shape matching, clustering algorithms (including
the WWW log example), fingerprint matching, DNA DB’s, etc.
[CNB+01] and [HS03] are both excellent surveys on searching in metric spaces

C++ source code freely available at http://www-db.deis.unibo.it/Mtree/

Remind: at a first sight, the M-tree “looks like” an R-tree.
However, remember that the M-tree only “knows” about distance values,
thus it ignores coordinate values and does not rely on any “geometric”
(coordinate-based) reasoning

Indici per query di similarità 35

Recursive bottom-up
aggregation of objects
based on regions
Regions can overlap
Each node can contain up
to C entries, but not less
than c ≤ 0.5*C

The root makes an
exception

M-tree: how it looks like
d≡L2

C D E F

A B

B
F D

EA

C

Depending on the metric, the “shape” of index regions changes

L1 L∞ Weighted Euclidean quadratic distance

Indici per query di similarità 36

The M-tree regions
Each node N of the tree has an associated region, Reg(N), defined as

Reg(N) = {p: p ∈U , d(p,vN) ≤ rN}
where:

vN (the “center”) is also called a routing object, and
rN is called the (covering) radius of the region

The set of indexed points p that are reachable from node N are guaranteed
to have d(p,vN) ≤ rN

rN vN p

This immediately makes it possible to
apply the pruning principle:

If d(q,vN) > rN + r then prune node N:

Indici per query di similarità 37

Entries of leaf and internal nodes
Each node N stores a variable number of entries

Leaf node:
An entry E has the form E=(ObjFeatures,distP,TID), where

ObjFeatures are the feature values of the indexed object
distP is the distance between the object and its parent routing object (i.e, the
routing object of node N)

Internal node:
An entry E has the form E=(RoutingObjFeatures,CoveringRadius,distP,PID),
where

RoutingObjFeatures are the feature values of the routing object
CoveringRadius is the radius of the region
distP is the distance between the routing object and its parent routing object
(this is undefined for entries in the root node)

Indici per query di similarità 38

0

2

4

6

8

0 1 2 3 4 5 6 7 8
x

y

Entries: an example

((2,3),2,p1)

N7

((2,5),2.5,√5,)

((4,6),5,_,)

N3

p1

v7

v3

Indici per query di similarità 39

Fast pruning based on distP
Pre-computed distances distP are exploited during query execution to save
distance computations
Let vP be the parent (routing) object of vN

When we come to consider the entry of vN, we
have already computed the distance d(q,vP) between the query and its parent
know the distance d(vP,vN)

rN

vN

q

r

From the triangle inequality it is:
d(q,vN) ≥ |d(q,vP) - d(vP,vN)|

Thus we can prune node N
without computing d(q,vN) if

|d(q,vP) - d(vP,vN)| > rN + r

vP

d(vP,vN)
d(q,vP)

Indici per query di similarità 40

Example (edit distance)

1

pier
peer

spier

tier

piper pie

1 1

1 1

r=3r=1
r=5

spare

parsespire spore

fare

paris

3
3

2

2

2
4

shakespearer=5

N3

(spare,5,0), (shakespeare,5,0) …

(pier,1,4) (parse,3,2) … …

(pier,0) (tier,1) (spier,1)
(pie,1) (piper,1) (peer,1)

(parse,0) (spore,3) (fare,2)
(spire,3) (paris,2)

N0

N1 N2

N4

query = “spire”, r = 1
d(“spire”, “shakespeare”) =
= 7 > 5 +1
d(“spire”, “spare”) =
= 1 ≤ 5 +1

| d(“spire”, “spare”) –
d(“pier”, “spare”) | =

= | 1 – 4 | = 3 > 1 +1

| d(“spire”, “spare”) –
d(“parse”, “spare”) | =

= | 1 – 2 | = 1 ≤ 3 +1

d(“spire”, “parse”) =
= 3 ≤ 3 +1

| d(“spire”, “parse”) –
d(“parse”, “parse”) | =

= | 3 – 0 | = 3 > 1

spire spore

