# Indici per Query di Similarità 

## Sistemi informativi per le Decisioni

Slide a cura di Prof. Paolo Ciaccia

## Plan of activities

- In the following we will go through 2 distinct topics, all of them being related by the common objective to provide efficient support to the execution of similarity queries

1. We will describe the $R$-tree, by detailing how to search within a vector space
2. Then, we will consider metric trees, which allow us to deal even with non-vector features and with distance functions other than (weighted) Lp-norms

## Can we exploit indices to solve multi-dimensional queries?

- As a first step we consider B+-trees, assuming that we have one multi-attribute index that organizes (sorts) the tuples according to the order A1,A2, .., AD
- Again, we must understand what this organization implies from a geometrical point of view...


## The geometry of B+-trees

- Consider the list of leaf nodes of the $\mathrm{B}+$-tree: $\mathrm{N} 1 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 3 \rightarrow \ldots$
- The 1st leaf, N1, contains the smallest value(s) of A1, the number of which depends on the maximum leaf capacity C (=2*B+-tree order) and on data distribution
- The 2nd leaf starts with subsequent values, and so on
- The "big picture" is that the attribute space $\mathbf{A}$ is partitioned as in the figure

- No matter how we sort the attributes, searching for the k-NN of a point q will need to access too many nodes
- The basic reason is that "close" points of A are quite far apart in the list of leaves, thus moving along a coordinate (e.g., A1) will "cross" too many nodes



## Another approach based on B+-trees

- Assume that we somehow know, e.g., using DB statistics (see [CG99]), that the $k-N N$ of $q$ are in the (hyper-)rectangle with sides [11,h1]x [12,h2]x...
- Then we can issue $D$ independent range queries Ai BETWEEN li AND hi on the D indexes on $\mathrm{A} 1, \mathrm{~A} 2, \ldots, \mathrm{AD}$, and then intersect the results

- Besides the need to know the ranges, with this strategy we waste a lot of work
- This is roughly proportional to the union of the results minus their intersection


## Multi-dimensional (spatial) indices

- The multi-attribute $B+$-tree maps points of $A \subseteq \mathfrak{R}^{D}$ into points of $\mathfrak{R}$
- This "linearization" necessarily favors, depending on how attributes are ordered in the $B+$-tree, one attribute with respect to others
$\square$ A $B+-$ tree on $(X, Y)$ favors queries on $X$, it cannot be used for queries that do not specify a restriction on $X$
- Therefore, what we need is a way to organize points so as to preserve, as much as possible, their "spatial proximity"
- The issue of "spatial indexing" has been under investigation since the 70's, because of the requirements of applications dealing with "spatial data" (e.g., cartography, geographic information systems, VLSI, CAD)
- More recently (starting from the 90's), there has been a resurrection of interest in the problem due to the new challenges posed by several other application scenarios, such as multimedia
- We will now just consider one (indeed very relevant!) spatial index...


## The R-tree (Guttman, 1984)

- The R-tree [Gut84] is (somewhat) an extension of the B+-tree to multi-dimensional spaces, in that:
- The B+-tree organizes objects into
$\square$ a set of (non-overlapping) 1-D intervals,
$\square$ and then applies recursively this basic principle up to the root,
- the R-tree does the same but now using
$\square$ a set of (possibly overlapping) m-D intervals, i.e., (hyper-)rectangles!,
$\square$ and then applies recursively this basic principle up to the root
- The R-tree is also available in some commercial DBMS's, such as Oracle9i
- In the following we just present the aspects relevant to query processing, and postpone the discussion on R-tree management (insertion and split)

> Be sure to understand what the index looks like and how it is used to answer queries; for the moment don't be concerned on how an R-tree with a given structure can be built!

## R-tree: the intuition



- Recursive bottom-up aggregation of objects based on MBR's
- Regions can overlap
- This is a 2-D range query using $L 2$, other queries and distance functions can be supported as well

D


## R-tree basic properties (i)

- The R-tree is a dynamic, height-balanced, and paged tree
- Each node stores a variable number of entries


## Leaf node:

$\square$ An entry $E$ has the form $E=(t u p l e-k e y$, TID $)$, where tuple-key is the "spatial key" (position) of the tuple whose address is TID (remind: TID is a pointer)
Internal node:
$\square$ An entry $E$ has the form $E=(M B R, P I D)$, where MBR is the "Minimum Bounding Rectangle" (with sides parallel to the coordinate axes) of all the points reachable from ("under") the child node whose address is PID (PID = page identifier)

- We can uniform things by saying that each entry has the format

$$
E=(k e y, p t r)
$$

- If $N$ is the node pointed by E.ptr, then E.key is the "spatial key" of N



## R-tree basic properties (ii)

- The number of entries varies between $c$ and $C$, with $c \leq 0.5^{*} \mathrm{C}$ being a design parameter of the $R$-tree and $C$ being determined by the node size and the size of an entry (in turn this depends on the space dimensionality)
- The root (if not a leaf) makes an exception, since it can have as low as 2 children
- Note that a (hyper-)rectangle of $\mathfrak{R}^{\mathrm{D}}$ with sides parallel to the coordinate axes can be represented using only $2^{*} \mathrm{D}$ floats that encode the coordinate values of 2 opposite vertices



## Search: range query (i)

- We start with a query type simpler than k-NN queries, namely the


## Range Query <br> - Given a point $q$, a relation $R$, a search radius $r \geq 0$, and a distance function d, <br> - Determine all the objects t in R such that $\mathrm{d}(\mathrm{t}, \mathrm{q}) \leq \mathrm{r}$

- The region of $\mathfrak{R}^{D}$ defined as $\operatorname{Reg}(q)=\left\{p: p \in \mathfrak{R}^{D}, d(p, q) \leq r\right\}$ is also called the query region (thus, the result is always contained in the query region)
$\square$ For simplicity, both $d$ and $r$ are understood in the notation $\operatorname{Reg}(q)$
- In the literature there are several variants of range queries, such as:
$\square$ Point query: when $r=0$ (i.e., it looks for a perfect (exact) match)
$\square$ Window query: when the query region is a (hyper-)rectangle (a window)


## Search: range query (ii)

- The algorithm for processing a range query is extremely simple:
$\square$ We start from the root and, for each entry $E$ in the root node, we check if E.key intersects Reg(q):
$\operatorname{Req}(q) \cap E . k e y \neq \varnothing$ : we access the child node $N$ referenced by E.ptr
$R e q(q) \cap$ E.key $=\varnothing$ : $\quad$ we can discard node $N$ from the search
$\square$ When we arrive at a leaf node we just check for each entry $E$ if E.key $\in \operatorname{Reg}(q)$, that is, if $d(E . k e y, q) \leq r$.
- If this is the case we can add $E$ to the result of the index search

```
RangeQuery(q,r,N)
{ if N is a leaf then: for each E in N:
    if d(E.key,q) \leqr then add E to the result
    else: for each E in N:
    if Req(q) \cap E.key \not= \varnothing then RangeQuery(q,r,*(E.ptr) }
```

- The recursion starts from the root of the R-tree
$\square$ The notation $\mathrm{N}=$ *(E.ptr) means " N is the node pointed by E.ptr"
$\square$ Sometimes we also write ptr(N) in place of E.ptr


## Range queries in action



## Search: k-NN query (i)

- With the aim to better understand the logic of k-NN search, let us define for a node $N=$ *(E.ptr) of the R-tree its region as

$$
\operatorname{Reg}(*(E . p t r))=\operatorname{Reg}(N)=\{p: p \in \mathfrak{R D}, p \in E . k e y=E . M B R\}
$$

- Thus, we access node N if and only if (iff) $\operatorname{Req}(q) \cap \operatorname{Reg}(\mathrm{N}) \neq \varnothing$
- Let us now define $d_{\text {min }}(q, \operatorname{Reg}(N))=\inf _{p}\{d(q, p) \mid p \in \operatorname{Reg}(N)\}$, that is, the minimum possible distance between $q$ and a point in $\operatorname{Reg}(N)$
- The "MinDist" $\mathrm{d}_{\mathrm{min}}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))$ is a lower bound on the distances from q to any indexed point reachable from N
- We can make the following basic observation:
$\operatorname{Req}(\mathbf{q}) \cap \operatorname{Reg}(N) \neq \varnothing$
$\Leftrightarrow$
$\mathrm{d}_{\mathrm{MIN}}(\mathrm{q}, \operatorname{Reg}(\mathrm{N})) \leq \mathrm{r}$



## Search: k-NN query (ii)

- We now present an algorithm, called kNNOptimal [BBK+97], for solving kNN queries with an R-tree
$\square$ The algorithm also applies to other index structures (e.g., the M-tree) that we will see in this course
- For simplicity, consider the basic case $\mathrm{k}=1$
- For a given query point q , let $\mathrm{t}_{\mathrm{NN}}(\mathrm{q})$ be the 1 st nearest neighbor (1-NN = NN ) of q in R , and denote with $\mathrm{r}_{\mathrm{NN}}=\mathrm{d}\left(\mathrm{q}, \mathrm{t}_{\mathrm{NN}}(\mathrm{q})\right.$ ) its distance from q
$\square$ Clearly, $\mathrm{r}_{\mathrm{NN}}$ is only known when the algorithm terminates


## Theorem:

- Any algorithm for 1-NN queries must visit at least all the nodes $N$ whose MinDist is less than $r_{N N}$

Proof: Assume that an algorithm ALG stops by reporting as NN of q a point $t$ and that ALG does not read a node $N$ such that (s.t.) $\mathrm{d}_{\text {min }}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))<\mathrm{d}(\mathrm{q}, \mathrm{t})$; then $\operatorname{Reg}(N)$ might contain a point $\mathrm{t}^{\prime}$ s.t. $\mathrm{d}\left(\mathrm{q}, \mathrm{t}^{\prime}\right)<\mathrm{d}(\mathrm{q}, \mathrm{t})$, thus contradicting the hypothesis that t is the NN of q

## The logic of the kNNOptimal Algorithm

- The kNNOptimal algorithm uses a priority queue PQ, whose elements are pairs $\left[p \operatorname{ptr}(\mathrm{~N}), \mathrm{d}_{\text {min }}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))\right]$
- PQ is ordered by increasing values of $\mathrm{d}_{\text {min }}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))$
$\square$ DEQUEUE (PQ) extracts from PQ the pair with minimal MinDist
$\square$ ENQUEUE (PQ, $\left.\left[\operatorname{ptr}(\mathrm{N}), \mathrm{d}_{\text {miN }}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))\right]\right)$ performs an ordered insertion of the pair in the queue
- Pruning of the nodes is based on the following observation:
- If, at a certain point of the execution of the algorithm, we have found a point t s.t. $\mathrm{d}(\mathrm{q}, \mathrm{t})=\mathrm{r}$,
- Then, all the nodes $N$ with $d_{\operatorname{MiN}}(q, \operatorname{Reg}(N)) \geq r$ can be excluded from the search, since they cannot lead to an improvement of the result
$\square$ In the description of the algorithm, the pruning of pairs of PQ based on the above criterion is concisely denoted as UPDATE(PQ)
$\square$ With a slight abuse of terminology, we also say that "the node $N$ is in $P Q$ " meaning that the corresponding pair $\left[\operatorname{ptr}(\mathrm{N}), \mathrm{d}_{\text {MIN }}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))\right]$ is in PQ
- Intuitively, kNNOptimal performs a "range search with a variable (shrinking) search radius" until no improvement is possible anymore


## The kNNOptimal Algorithm (case k=1)

Input: query point q, index tree with root node RN
Output: $t_{N N}(q)$, the nearest neighbor of $q$, and $r_{N N}=d\left(q, t_{N N}(q)\right)$

1. Initialize $P Q$ with $[p \operatorname{tr}(\mathrm{RN}), 0]$; // starts from the root node
2. $r_{N N}:=\infty ; \quad / /$ this is the initial "search radius"
3. while $\mathrm{PQ} \neq \varnothing$ :
// until the queue is not empty...
4. $\left[\operatorname{ptr}(\mathrm{N}), \mathrm{d}_{\mathrm{MIN}}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))\right]:=\operatorname{DEQUEUE}(\mathrm{PQ}) ; \quad / / \ldots$ get the closest pair...
5. Read(N); // ... and reads the node
6. if $N$ is a leaf then: for each point $t$ in $N$ :
7. 
8. 
9. 
10. 

$$
\begin{aligned}
\text { if } \mathrm{d}(\mathrm{q}, \mathrm{t})< & \mathrm{r}_{\mathrm{NN}} \text { then: }\left\{\mathrm{t}_{\mathrm{NN}}(\mathrm{q}):=\mathrm{t} ; \mathrm{r}_{\mathrm{NN}}:=\mathrm{d}(\mathrm{q}, \mathrm{t}) ; \text { UPDATE }(\mathrm{PQ})\right\} \\
& / / \text { reduces the search radius and prunes nodes }
\end{aligned}
$$

else: for each child node Nc of N :
if $d_{\text {MIN }}(q, \operatorname{Reg}(N c))<r_{N N}$ then:
ENQUEUE(PQ,[ptr(Nc), $\left.\left.\mathrm{d}_{\text {min }}(\mathrm{q}, \operatorname{Reg}(\mathrm{Nc}))\right]\right)$;
11. return $t_{N N}(q)$ and $r_{N N}$;
12. end.

## kNNOptimal in action



- Nodes are numbered following the order in which they are accessed
- Objects are numbered as they are found to improve (reduce) the search radius
- The accessed leaf nodes are shown in red


## Correctness and Optimality of kNNOptimal

- The kNNOptimal algorithm is clearly correct
- To show that it is also optimal, that is, it reads the minimum number of nodes, it is sufficient to prove that
it never reads a node $N$ s.t. $d_{\text {min }}(q, \operatorname{Reg}(N))>r_{N N}$


## Proof:

- Indeed, N is read only if, at a certain execution step, it becomes the 1st element in the priority queue PQ
- Let N 1 be the node containing $\mathrm{t}_{\mathrm{NN}}(\mathrm{q}), \mathrm{N} 2$ its parent node, N 3 the parent node of N 2 , and so on, up to $\mathrm{Nh}=\mathrm{RN}$ ( $\mathrm{h}=$ height of the tree)
- Now observe that, by definition of MinDist, it is:

$$
r_{\text {NN }} \geq d_{\text {MIN }}(q, \operatorname{Reg}(N 1)) \geq d_{\text {MIN }}(q, \operatorname{Reg}(N 2)) \geq \ldots \geq d_{\text {MIN }}(q, \operatorname{Reg}(N h))
$$

- At each time step before we find $\mathrm{t}_{\mathrm{NN}}(\mathrm{q})$, one (and only one) of the nodes $\mathrm{N} 1, \mathrm{~N} 2, \ldots, \mathrm{Nh}$ is in the priority queue
- It follows that N can never become the 1st element of PQ


## The general case $(k \geq 1)$

- The algorithm is easily extended to the case $\mathrm{k} \geq 1$ by using:
$\square$ a data structure, which we call ResultList, where we maintain the $k$ closest objects found so far, together with their distances from q
$\square$ as "current search radius" the distance, $r_{k-N N}$, of the current $k$-th NN of $q$, that is, the k-th element of ResultList

| ResultList | ObjectID | distance | $k=5$ <br> - No node with distance $\geq 15$ needs to be read |
| :---: | :---: | :---: | :---: |
|  | t15 | 4 |  |
|  | t24 | 8 |  |
|  | t18 | 9 |  |
|  | t4 | 12 |  |
|  | t2 | 15 |  |

- The rest of the algorithm remains unchanged


## The kNNOptimal Algorithm (case $\mathrm{k} \geq 1$ )

```
Input: query point q, integer \(k \geq 1\), index tree with root node RN
Output: the k nearest neighbors of q , together with their distances
    1. Initialize \(P Q\) with \([p \operatorname{tr}(\mathrm{RN}), 0]\);
    2. for \(\mathrm{i}=1\) to k : ResultList(i) := [null, \(\infty\) ]; \(\mathrm{r}_{\mathrm{k}-\mathrm{NN}}:=\) ResultList(k).dist;
    3. while \(\mathrm{PQ} \neq \varnothing\) :
    4. \(\quad\left[p \operatorname{tr}(\mathrm{~N}), \mathrm{d}_{\mathrm{MIN}}(\mathrm{q}, \operatorname{Reg}(\mathrm{N}))\right]:=\mathrm{DEQUEUE}(\mathrm{PQ})\);
    5. Read(N);
    6. if \(N\) is a leaf then: for each point \(t\) in \(N\) :
    7. if \(\mathrm{d}(\mathrm{q}, \mathrm{t})<\mathrm{r}_{\mathrm{k}-\mathrm{N} N}\) then: \(\{\) remove the element in ResultList( k );
        insert \([\mathrm{t}, \mathrm{d}(\mathrm{q}, \mathrm{t})]\) in ResultList;
                                \(r_{k-N N}:=\) ResultList(k).dist; UPDATE(PQ)\}
    else: for each child node Nc of N :
    if \(d_{\text {MIN }}(\mathrm{q}, \operatorname{Reg}(\mathrm{Nc}))<\mathrm{r}_{\mathrm{k}-\mathrm{NN}}\) then:
                            ENQUEUE(PQ,[ptr(Nc), dmin(q,Reg(Nc))]);
13. return ResultList;
14. end.
```


## Back to the R-tree

- It's now time to discuss how an R-tree can be effectively built

■ It has to be considered that many " $R$-tree variants" exist, and it's not our intention to go through their details

- It just suffices to say that one of such variants leads to what is known as the $R^{*}$-tree [BKS+90], which is the commonest version in use
- With respect to the original proposal [Gut84], the R*-tree adds smarter insertion and split heuristics, plus a socalled "forced reinsert" technique that we do not consider here


## R-tree: how it looks like



## R-tree: insertion of a new object

- We start from the root and move down the tree one step at a time, trying to find a "nice place" where to accommodate the new object p
$\square$ For simplicity, we assume that indexed objects are points, similar arguments apply if we index (hyper-)rectangles (MBR's)

Which child node

- At each step we have a same question to answer: is the most suitable to



## R-tree: the ChooseSubtree method

- The recursive algorithm that descends the tree to insert a new object $p$, together with its TID, is called ChooseSubtree

```
ChooseSubtree(Ep=(p,TID),ptr(N))
1. Read(N);
2. If N is a leaf then: return N // we are done
3. else: { choose among the entries Ec in N
    the one, Ec*, for which
    return ChooseSubtree(Ep,Ec*.ptr) } // recursive call
    end.
```

- We invoke the method on the index root
- The specific criterion used to decide "how bad" an entry is, should we choose it to insert $p$, is encapsulated in the Penalty method
$\square$ Variants of the R-tree differ in how they implement Penalty
- This insertion algorithm is the one used by most multi-dimensional and metric trees


## R-tree: the Penalty method

- If point $p$ is inside the region of an entry Ec, then the penalty is 0
- Otherwise, Penalty can be computed as the increment of volume (area) of the MBR
$\square$ However, if Ec points to a leaf node, then [BKS+90] shows that it's better to consider the increment of overlap with the other entries
- Both criteria aim to obtain trees with better performance:
$\square$ Large area: increases the number of nodes to be visited by a query
$\square$ Large overlap: also degrades performance



## R-tree: splitting of a leaf node

- When p has to be inserted into a leaf node that already contains C entries, an overflow occurs, and N has to be split
- For leaf nodes whose entries are points the solution aims to split the set of $C+1$ points into 2 subsets, each with at least $c$ and at most $C$ points
- Among the several possibilities, one could consider the choice that leads to have a minimum overall area
$\square$ However, this is an NP-Hard problem, thus heuristics have to be applied



## R-tree: splitting of a non-leaf node

- As in B+-trees, splits propagate upward and can recursively trigger splits at higher levels of the tree
- The problem to be faced now is how to split a set of C+1 (hyper-)rectangles
$\square$ Note that this applies also to leaf nodes if they store MBR's
- The original proposal just aims to minimize the sum of resulting areas
- The $R^{*}$-tree implements a more sophisticated criterion, which takes into account the areas, overlap, and perimeters of the resulting regions



## Beyond vector spaces

- It's a matter of fact that vector spaces, equipped with some (weighted) Lp-norm, are not general enough to deal with the whole variety of feature types and distance functions needed in MMDB's


## Example:

given 2 sets of points $s 1$ and $s 2$, their Hausdorff distance is defined as follows:


## Another example: edit distance

- A common distance measure for strings is the so-called edit distance, defined as the minimum number of characters that have be inserted, deleted, or substituted so as to transform a string s1 into another string s2

$$
\text { dedit }^{\text {edit ('ball','bull') }}=1 \quad \text { dedit }\left(\text { 'balls','bell') }=2 \quad \text { dedit }^{2} \text { ('rather','alter') }=3\right.
$$

- The edit distance is also commonly used in genomic DB's to compare DNA sequences. Each DNA sequence is a string over the 4-letters alphabet of bases:
a: adenine
c: cytosine
g: guanine
t: thymine
dedit('gatctggtgg','agcaaatcag') $=7$

| $g$ | $a$ | t | c | t | g | g | t | g | - | g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $=$ | 2 | $=$ | 3 | 4 | 5 | $=$ | 6 | 7 | $=$ |
| - | a | g | c | a | a | a | t | c | a | g |

The edit distance can be computed using a dynamic programming procedure

## Metric spaces

- A metric space $M=(U, d)$ is a pair, where
$U$ is a domain ("universe") of values, and
$d$ is a distance function that, $\forall x, y, z \in U$, satisfies the metric axioms:

$$
\begin{array}{ll}
d(x, y) \geq 0, d(x, y)=0 \Leftrightarrow x=y & \text { (positivity) } \\
d(x, y)=d(y, x) & \text { (symmetry) } \\
d(x, y) \leq d(x, z)+d(z, y) & \text { (triangle inequality) }
\end{array}
$$

$\square$ All the distance functions seen in the previous examples are metrics, and so are the (weighted) Lp-norms

Metric indexes only use the metric axioms to organize objects, and exploit the triangle inequality to prune the search space

## Principles of metric indexing (i)

- Given a "metric dataset" $\mathbf{P} \subseteq \mathbf{U}$, one of the two following principles can be applied to partition it into two subsets
Ball decomposition: take a point v ("vantage point"), compute the distances of all other points $p$ w.r.t. $v, d(p, v)$, and define

$$
P 1=\left\{p: d(p, v) \leq r_{v}\right\} \quad P 2=\left\{p: d(p, v)>r_{v}\right\}
$$

If $r_{v}$ is chosen so that $|\mathrm{P} 1| \approx|\mathrm{P} 2| \approx|\mathrm{P}| / 2$ we obtain a balanced partition


Consider a range query $\{p: d(p, q) \leq r\}$ If $\mathbf{d}(\mathbf{q}, \mathbf{v})>\mathbf{r}_{\mathbf{v}}+\mathbf{r}$ we can conclude that no point in P1 belongs to the result Proof:
we show that $d(p, q)>r$ holds $\forall p \in P 1$.
$d(p, q) \geq d(q, v)-d(p, v) \quad$ (triangle ineq.)
$>r_{v}+r-d(p, v) \quad$ (by hyp.)
$\geq r_{v}+r-r_{v} \quad$ (by def. of P1)
$\geq r$
Similar arguments can be applied to P2

## Principles of metric indexing (ii)

Generalized Hyperplane: take two points v1 and v2, compute the distances of all other points p w.r.t. v 1 and v 2 , and define

$$
P 1=\{p: d(p, v 1) \leq d(p, v 2)\} P 2=\{p: d(p, v 2)<d(p, v 1)\}
$$



```
Consider a range query {p:d(p,q)\leqr}
If d(q,v1) - d(q,v2) > 2*r we can conclude
that no point in P1 belongs to the result
Proof:
we show that d(p,q)> r holds }\forallp\inP1
d(q,v1) -d(p,q) \leqd(p,v1) (triangle ineq.)
d(p,v1)\leqd(p,v2) (def. of P1)
d(p,v2)\leqd(p,q)+d(q,v2) (triangle ineq.)
```


## Then:

```
d(q,v1) - d(p,q) \leqd(p,q) + d(q,v2)
d(p,q)\geq(d(q,v1) - d(q,v2))/2
    > r
    (by hyp.)
```


## The M-tree (Ciaccia, Patella, Zezula, 1997)

- The M-tree has been the first dynamic, paged, and balanced metric index
- Intuitively, it generalizes "R-tree principles" to arbitrary metric spaces
$\square$ The M-tree treats the distance function as a "black box"
- Since 1997 [CPZ97] it has been used by several research groups for:
$\square$ Image retrieval, text indexing, shape matching, clustering algorithms (including the WWW log example), fingerprint matching, DNA DB's, etc.
$\square[C N B+01]$ and [HS03] are both excellent surveys on searching in metric spaces
- C++ source code freely available at http://www-db.deis.unibo.it/Mtree/

- Remind: at a first sight, the M-tree "looks like" an R-tree. However, remember that the M-tree only "knows" about distance values, thus it ignores coordinate values and does not rely on any "geometric" (coordinate-based) reasoning


## M-tree: how it looks like



- Recursive bottom-up aggregation of objects based on regions
- Regions can overlap
- Each node can contain up to C entries, but not less than $\mathrm{c} \leq 0.5^{*} \mathrm{C}$
- The root makes an exception
- Depending on the metric, the "shape" of index regions changes


L1

$L_{\infty}$


Weighted Euclidean

quadratic distance

## The M-tree regions

- Each node $N$ of the tree has an associated region, $\operatorname{Reg}(N)$, defined as

$$
\operatorname{Reg}(N)=\left\{p: p \in U, d\left(p, v_{N}\right) \leq r_{N}\right\}
$$

where:
$\square \mathbf{v}_{\mathbf{N}}$ (the "center") is also called a routing object, and
$\square \mathbf{r}_{\mathrm{N}}$ is called the (covering) radius of the region

- The set of indexed points $p$ that are reachable from node $N$ are guaranteed to have $d\left(p, v_{N}\right) \leq r_{N}$

- This immediately makes it possible to apply the pruning principle:
If $d\left(q, v_{N}\right)>r_{N}+r$ then prune node $N$ :


## Entries of leaf and internal nodes

- Each node N stores a variable number of entries

Leaf node:
$\square$ An entry E has the form $E=(O b j F e a t u r e s, d i s t P, T I D)$, where

- ObjFeatures are the feature values of the indexed object
- distP is the distance between the object and its parent routing object (i.e, the routing object of node N )

Internal node:
$\square$ An entry E has the form E=(RoutingObjFeatures, CoveringRadius,distP,PID), where

- RoutingObjFeatures are the feature values of the routing object
- CoveringRadius is the radius of the region
- distP is the distance between the routing object and its parent routing object (this is undefined for entries in the root node)


## Entries: an example



## Fast pruning based on distP

- Pre-computed distances distP are exploited during query execution to save distance computations
- Let $\mathrm{v}_{\mathrm{P}}$ be the parent (routing) object of $\mathrm{v}_{\mathrm{N}}$
- When we come to consider the entry of $\mathrm{v}_{\mathrm{N}}$, we
$\square$ have already computed the distance $d\left(q, v_{p}\right)$ between the query and its parent


From the triangle inequality it is: $d\left(q, v_{N}\right) \geq\left|d\left(q, v_{p}\right)-d\left(v_{p}, v_{N}\right)\right|$

Thus we can prune node $N$ without computing $\mathrm{d}\left(\mathrm{q}, \mathrm{v}_{\mathrm{N}}\right)$ if

$$
\left|d\left(q, v_{p}\right)-d\left(v_{p}, v_{N}\right)\right|>r_{N}+r
$$

## Example (edit distance)

query = "spire", r = 1
 $=\$ \geqq 3+1$
| d("spire", "ppasse") -
 $=|B-B|=3 \geqq 3+1$


